Nonlocal Vibration of Y-SWCNT Conveying Fluid Considering a General Nonlocal Elastic Medium
Authors
Abstract:
In this paper, a nonlocal foundation model is proposed to analyze the vibration and instability of a Y-shaped single-walled carbon nanotube (Y-SWCNT) conveying fluid. In order to achieve more accurate results, fourth order beam theory is utilized to obtain strain-displacement relations. For the first time, a nonlocal model is presented based on nonlocal elasticity and the effects of nonlocal forces from adjacent and non-adjacent elements on deflection are considered. The Eringen’s theory is utilized due to its capability to consider the size effect. Based on Hamilton’s principle, motion equations as well as boundary conditions are derived and solved by means of hybrid analytical-numerical method. It is believed that the presented general foundation model offers an exact and effective new approach to investigate vibration characteristics of this kind of structures embedded in an elastic medium. The results of this investigation may provide a useful reference in controlling systems in nano-scale.
similar resources
Nonlinear Nonlocal Vibration of an Embedded Viscoelastic Y-SWCNT Conveying Viscous Fluid Under Magnetic Field Using Homotopy Analysis Method
In the present work, effect of von Karman geometric nonlinearity on the vibration characteristics of a Y-shaped single walled carbon nanotube (Y-SWCNT) conveying viscose fluid is investigated based on Euler Bernoulli beam (EBB) model. The Y-SWCNT is also subjected to a longitudinal magnetic field which produces Lorentz force in transverse direction. In order to consider the small scale effects,...
full textNonlocal Vibration of Embedded Coupled CNTs Conveying Fluid Under Thermo-Magnetic Fields Via Ritz Method
In this work, nonlocal vibration of double of carbon nanotubes (CNTs) system conveying fluid coupled by visco-Pasternak medium is carried out based on nonlocal elasticity theory where CNTs are placed in uniform temperature change and magnetic field. Considering Euler-Bernoulli beam (EBB) model and Knudsen number, the governing equations of motion are discretized and Ritz method is applied to ob...
full textThermal vibration analysis of double-layer graphene embedded in elastic medium based on nonlocal continuum mechanics
This paper presents the thermal vibration analysis of double-layer graphene sheet embedded in polymer elastic medium, using the plate theory and nonlocal continuum mechanics for small scale effects. The graphene is modeled based on continuum plate theory and the axial stress caused by the thermal effects is also considered. Nonlocal governing equations of motion for this double-layer graphene s...
full textNonlocal DQM for Large Amplitude Vibration of Annular Boron Nitride Sheets on Nonlinear Elastic Medium
One of the most promising materials in nanotechnology such as sensors, actuators and resonators is annular Boron Nitride sheets (ABNSs) due to excelled electro-thermo-mechanical properties. In this study, however, differential quadrature method (DQM) and nonlocal piezoelasticity theory are used to investigate the nonlinear vibration response of embedded single-layered annular Boron Nitride shee...
full textThermal vibration analysis of double-layer graphene embedded in elastic medium based on nonlocal continuum mechanics
This paper presents the thermal vibration analysis of double-layer graphene sheet embedded in polymer elastic medium, using the plate theory and nonlocal continuum mechanics for small scale effects. The graphene is modeled based on continuum plate theory and the axial stress caused by the thermal effects is also considered. Nonlocal governing equations of motion for this double-layer graphene s...
full textNonlocal Dispersion Analysis of a Fluid – Conveying Thermo Elastic Armchair Single Walled Carbon Nanotube Under Moving Harmonic Excitation
In this work, the nonlocal elastic waves in a fluid conveying armchair thermo elastic single walled carbon nanotube under moving harmonic load is studied using Eringen nonlocal elasticity theory via Euler Bernoulli beam equation. The governing equations that contains partial differential equations for single walled carbon nanotube is derived by considering thermal and Lorenz magnetic force. The...
full textMy Resources
Journal title
volume 8 issue 2
pages 232- 246
publication date 2016-06-30
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023